/************************************************************************** * * Copyright 2013-2014 RAD Game Tools and Valve Software * Copyright 2010-2014 Rich Geldreich and Tenacious Software LLC * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * **************************************************************************/ #include "miniz.h" #ifndef MINIZ_NO_DEFLATE_APIS #ifdef __cplusplus extern "C" { #endif /* ------------------- Low-level Compression (independent from all decompression API's) */ /* Purposely making these tables static for faster init and thread safety. */ static const mz_uint16 s_tdefl_len_sym[256] = { 257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268, 268, 269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272, 272, 272, 273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274, 274, 274, 274, 275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276, 276, 276, 276, 276, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 285 }; static const mz_uint8 s_tdefl_len_extra[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0 }; static const mz_uint8 s_tdefl_small_dist_sym[512] = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17 }; static const mz_uint8 s_tdefl_small_dist_extra[512] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; static const mz_uint8 s_tdefl_large_dist_sym[128] = { 0, 0, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 }; static const mz_uint8 s_tdefl_large_dist_extra[128] = { 0, 0, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13 }; /* Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted values. */ typedef struct { mz_uint16 m_key, m_sym_index; } tdefl_sym_freq; static tdefl_sym_freq *tdefl_radix_sort_syms(mz_uint num_syms, tdefl_sym_freq *pSyms0, tdefl_sym_freq *pSyms1) { mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2]; tdefl_sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1; MZ_CLEAR_ARR(hist); for (i = 0; i < num_syms; i++) { mz_uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; } while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--; for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) { const mz_uint32 *pHist = &hist[pass << 8]; mz_uint offsets[256], cur_ofs = 0; for (i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; } for (i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; { tdefl_sym_freq *t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; } } return pCur_syms; } /* tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996. */ static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n) { int root, leaf, next, avbl, used, dpth; if (n == 0) return; else if (n == 1) { A[0].m_key = 1; return; } A[0].m_key += A[1].m_key; root = 0; leaf = 2; for (next = 1; next < n - 1; next++) { if (leaf >= n || A[root].m_key < A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = (mz_uint16)next; } else A[next].m_key = A[leaf++].m_key; if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) { A[next].m_key = (mz_uint16)(A[next].m_key + A[root].m_key); A[root++].m_key = (mz_uint16)next; } else A[next].m_key = (mz_uint16)(A[next].m_key + A[leaf++].m_key); } A[n - 2].m_key = 0; for (next = n - 3; next >= 0; next--) A[next].m_key = A[A[next].m_key].m_key + 1; avbl = 1; used = dpth = 0; root = n - 2; next = n - 1; while (avbl > 0) { while (root >= 0 && (int)A[root].m_key == dpth) { used++; root--; } while (avbl > used) { A[next--].m_key = (mz_uint16)(dpth); avbl--; } avbl = 2 * used; dpth++; used = 0; } } /* Limits canonical Huffman code table's max code size. */ enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 }; static void tdefl_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) { int i; mz_uint32 total = 0; if (code_list_len <= 1) return; for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i]; for (i = max_code_size; i > 0; i--) total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i)); while (total != (1UL << max_code_size)) { pNum_codes[max_code_size]--; for (i = max_code_size - 1; i > 0; i--) if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; } total--; } } static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num, int table_len, int code_size_limit, int static_table) { int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE]; mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1]; MZ_CLEAR_ARR(num_codes); if (static_table) { for (i = 0; i < table_len; i++) num_codes[d->m_huff_code_sizes[table_num][i]]++; } else { tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS], *pSyms; int num_used_syms = 0; const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0]; for (i = 0; i < table_len; i++) if (pSym_count[i]) { syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i]; syms0[num_used_syms++].m_sym_index = (mz_uint16)i; } pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1); tdefl_calculate_minimum_redundancy(pSyms, num_used_syms); for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++; tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms, code_size_limit); MZ_CLEAR_ARR(d->m_huff_code_sizes[table_num]); MZ_CLEAR_ARR(d->m_huff_codes[table_num]); for (i = 1, j = num_used_syms; i <= code_size_limit; i++) for (l = num_codes[i]; l > 0; l--) d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i); } next_code[1] = 0; for (j = 0, i = 2; i <= code_size_limit; i++) next_code[i] = j = ((j + num_codes[i - 1]) << 1); for (i = 0; i < table_len; i++) { mz_uint rev_code = 0, code, code_size; if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue; code = next_code[code_size]++; for (l = code_size; l > 0; l--, code >>= 1) rev_code = (rev_code << 1) | (code & 1); d->m_huff_codes[table_num][i] = (mz_uint16)rev_code; } } #define TDEFL_PUT_BITS(b, l) \ do \ { \ mz_uint bits = b; \ mz_uint len = l; \ MZ_ASSERT(bits <= ((1U << len) - 1U)); \ d->m_bit_buffer |= (bits << d->m_bits_in); \ d->m_bits_in += len; \ while (d->m_bits_in >= 8) \ { \ if (d->m_pOutput_buf < d->m_pOutput_buf_end) \ *d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \ d->m_bit_buffer >>= 8; \ d->m_bits_in -= 8; \ } \ } \ MZ_MACRO_END #define TDEFL_RLE_PREV_CODE_SIZE() \ { \ if (rle_repeat_count) \ { \ if (rle_repeat_count < 3) \ { \ d->m_huff_count[2][prev_code_size] = (mz_uint16)(d->m_huff_count[2][prev_code_size] + rle_repeat_count); \ while (rle_repeat_count--) \ packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \ } \ else \ { \ d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); \ packed_code_sizes[num_packed_code_sizes++] = 16; \ packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_repeat_count - 3); \ } \ rle_repeat_count = 0; \ } \ } #define TDEFL_RLE_ZERO_CODE_SIZE() \ { \ if (rle_z_count) \ { \ if (rle_z_count < 3) \ { \ d->m_huff_count[2][0] = (mz_uint16)(d->m_huff_count[2][0] + rle_z_count); \ while (rle_z_count--) \ packed_code_sizes[num_packed_code_sizes++] = 0; \ } \ else if (rle_z_count <= 10) \ { \ d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); \ packed_code_sizes[num_packed_code_sizes++] = 17; \ packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 3); \ } \ else \ { \ d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); \ packed_code_sizes[num_packed_code_sizes++] = 18; \ packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 11); \ } \ rle_z_count = 0; \ } \ } static const mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; static void tdefl_start_dynamic_block(tdefl_compressor *d) { int num_lit_codes, num_dist_codes, num_bit_lengths; mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count, rle_repeat_count, packed_code_sizes_index; mz_uint8 code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], prev_code_size = 0xFF; d->m_huff_count[0][256] = 1; tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE); tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE); for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--) if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break; for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--) if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break; memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes); memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], num_dist_codes); total_code_sizes_to_pack = num_lit_codes + num_dist_codes; num_packed_code_sizes = 0; rle_z_count = 0; rle_repeat_count = 0; memset(&d->m_huff_count[2][0], 0, sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2); for (i = 0; i < total_code_sizes_to_pack; i++) { mz_uint8 code_size = code_sizes_to_pack[i]; if (!code_size) { TDEFL_RLE_PREV_CODE_SIZE(); if (++rle_z_count == 138) { TDEFL_RLE_ZERO_CODE_SIZE(); } } else { TDEFL_RLE_ZERO_CODE_SIZE(); if (code_size != prev_code_size) { TDEFL_RLE_PREV_CODE_SIZE(); d->m_huff_count[2][code_size] = (mz_uint16)(d->m_huff_count[2][code_size] + 1); packed_code_sizes[num_packed_code_sizes++] = code_size; } else if (++rle_repeat_count == 6) { TDEFL_RLE_PREV_CODE_SIZE(); } } prev_code_size = code_size; } if (rle_repeat_count) { TDEFL_RLE_PREV_CODE_SIZE(); } else { TDEFL_RLE_ZERO_CODE_SIZE(); } tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE); TDEFL_PUT_BITS(2, 2); TDEFL_PUT_BITS(num_lit_codes - 257, 5); TDEFL_PUT_BITS(num_dist_codes - 1, 5); for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--) if (d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]]) break; num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1)); TDEFL_PUT_BITS(num_bit_lengths - 4, 4); for (i = 0; (int)i < num_bit_lengths; i++) TDEFL_PUT_BITS(d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3); for (packed_code_sizes_index = 0; packed_code_sizes_index < num_packed_code_sizes;) { mz_uint code = packed_code_sizes[packed_code_sizes_index++]; MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2); TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]); if (code >= 16) TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++], "\02\03\07"[code - 16]); } } static void tdefl_start_static_block(tdefl_compressor *d) { mz_uint i; mz_uint8 *p = &d->m_huff_code_sizes[0][0]; for (i = 0; i <= 143; ++i) *p++ = 8; for (; i <= 255; ++i) *p++ = 9; for (; i <= 279; ++i) *p++ = 7; for (; i <= 287; ++i) *p++ = 8; memset(d->m_huff_code_sizes[1], 5, 32); tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE); tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE); TDEFL_PUT_BITS(1, 2); } static const mz_uint mz_bitmasks[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF }; #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) { mz_uint flags; mz_uint8 *pLZ_codes; mz_uint8 *pOutput_buf = d->m_pOutput_buf; mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf; mz_uint64 bit_buffer = d->m_bit_buffer; mz_uint bits_in = d->m_bits_in; #define TDEFL_PUT_BITS_FAST(b, l) \ { \ bit_buffer |= (((mz_uint64)(b)) << bits_in); \ bits_in += (l); \ } flags = 1; for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end; flags >>= 1) { if (flags == 1) flags = *pLZ_codes++ | 0x100; if (flags & 1) { mz_uint s0, s1, n0, n1, sym, num_extra_bits; mz_uint match_len = pLZ_codes[0]; mz_uint match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8)); pLZ_codes += 3; MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]); /* This sequence coaxes MSVC into using cmov's vs. jmp's. */ s0 = s_tdefl_small_dist_sym[match_dist & 511]; n0 = s_tdefl_small_dist_extra[match_dist & 511]; s1 = s_tdefl_large_dist_sym[match_dist >> 8]; n1 = s_tdefl_large_dist_extra[match_dist >> 8]; sym = (match_dist < 512) ? s0 : s1; num_extra_bits = (match_dist < 512) ? n0 : n1; MZ_ASSERT(d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits); } else { mz_uint lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) { flags >>= 1; lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) { flags >>= 1; lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); } } } if (pOutput_buf >= d->m_pOutput_buf_end) return MZ_FALSE; memcpy(pOutput_buf, &bit_buffer, sizeof(mz_uint64)); pOutput_buf += (bits_in >> 3); bit_buffer >>= (bits_in & ~7); bits_in &= 7; } #undef TDEFL_PUT_BITS_FAST d->m_pOutput_buf = pOutput_buf; d->m_bits_in = 0; d->m_bit_buffer = 0; while (bits_in) { mz_uint32 n = MZ_MIN(bits_in, 16); TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n); bit_buffer >>= n; bits_in -= n; } TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]); return (d->m_pOutput_buf < d->m_pOutput_buf_end); } #else static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) { mz_uint flags; mz_uint8 *pLZ_codes; flags = 1; for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf; flags >>= 1) { if (flags == 1) flags = *pLZ_codes++ | 0x100; if (flags & 1) { mz_uint sym, num_extra_bits; mz_uint match_len = pLZ_codes[0], match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8)); pLZ_codes += 3; MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]); if (match_dist < 512) { sym = s_tdefl_small_dist_sym[match_dist]; num_extra_bits = s_tdefl_small_dist_extra[match_dist]; } else { sym = s_tdefl_large_dist_sym[match_dist >> 8]; num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8]; } MZ_ASSERT(d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits); } else { mz_uint lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); } } TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]); return (d->m_pOutput_buf < d->m_pOutput_buf_end); } #endif /* MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS */ static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block) { if (static_block) tdefl_start_static_block(d); else tdefl_start_dynamic_block(d); return tdefl_compress_lz_codes(d); } static const mz_uint s_tdefl_num_probes[11]; static int tdefl_flush_block(tdefl_compressor *d, int flush) { mz_uint saved_bit_buf, saved_bits_in; mz_uint8 *pSaved_output_buf; mz_bool comp_block_succeeded = MZ_FALSE; int n, use_raw_block = ((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) && (d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size; mz_uint8 *pOutput_buf_start = ((d->m_pPut_buf_func == NULL) && ((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE)) ? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs) : d->m_output_buf; d->m_pOutput_buf = pOutput_buf_start; d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16; MZ_ASSERT(!d->m_output_flush_remaining); d->m_output_flush_ofs = 0; d->m_output_flush_remaining = 0; *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left); d->m_pLZ_code_buf -= (d->m_num_flags_left == 8); if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index)) { const mz_uint8 cmf = 0x78; mz_uint8 flg, flevel = 3; mz_uint header, i, mz_un = sizeof(s_tdefl_num_probes) / sizeof(mz_uint); /* Determine compression level by reversing the process in tdefl_create_comp_flags_from_zip_params() */ for (i = 0; i < mz_un; i++) if (s_tdefl_num_probes[i] == (d->m_flags & 0xFFF)) break; if (i < 2) flevel = 0; else if (i < 6) flevel = 1; else if (i == 6) flevel = 2; header = cmf << 8 | (flevel << 6); header += 31 - (header % 31); flg = header & 0xFF; TDEFL_PUT_BITS(cmf, 8); TDEFL_PUT_BITS(flg, 8); } TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1); pSaved_output_buf = d->m_pOutput_buf; saved_bit_buf = d->m_bit_buffer; saved_bits_in = d->m_bits_in; if (!use_raw_block) comp_block_succeeded = tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) || (d->m_total_lz_bytes < 48)); /* If the block gets expanded, forget the current contents of the output buffer and send a raw block instead. */ if (((use_raw_block) || ((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >= d->m_total_lz_bytes))) && ((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size)) { mz_uint i; d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in; TDEFL_PUT_BITS(0, 2); if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF) { TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16); } for (i = 0; i < d->m_total_lz_bytes; ++i) { TDEFL_PUT_BITS(d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK], 8); } } /* Check for the extremely unlikely (if not impossible) case of the compressed block not fitting into the output buffer when using dynamic codes. */ else if (!comp_block_succeeded) { d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in; tdefl_compress_block(d, MZ_TRUE); } if (flush) { if (flush == TDEFL_FINISH) { if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) { mz_uint i, a = d->m_adler32; for (i = 0; i < 4; i++) { TDEFL_PUT_BITS((a >> 24) & 0xFF, 8); a <<= 8; } } } else { mz_uint i, z = 0; TDEFL_PUT_BITS(0, 3); if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } for (i = 2; i; --i, z ^= 0xFFFF) { TDEFL_PUT_BITS(z & 0xFFFF, 16); } } } MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end); memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8; d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes; d->m_total_lz_bytes = 0; d->m_block_index++; if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0) { if (d->m_pPut_buf_func) { *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf; if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user)) return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED); } else if (pOutput_buf_start == d->m_output_buf) { int bytes_to_copy = (int)MZ_MIN((size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs)); memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf, bytes_to_copy); d->m_out_buf_ofs += bytes_to_copy; if ((n -= bytes_to_copy) != 0) { d->m_output_flush_ofs = bytes_to_copy; d->m_output_flush_remaining = n; } } else { d->m_out_buf_ofs += n; } } return d->m_output_flush_remaining; } #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES #ifdef MINIZ_UNALIGNED_USE_MEMCPY static mz_uint16 TDEFL_READ_UNALIGNED_WORD(const mz_uint8* p) { mz_uint16 ret; memcpy(&ret, p, sizeof(mz_uint16)); return ret; } static mz_uint16 TDEFL_READ_UNALIGNED_WORD2(const mz_uint16* p) { mz_uint16 ret; memcpy(&ret, p, sizeof(mz_uint16)); return ret; } #else #define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16 *)(p) #define TDEFL_READ_UNALIGNED_WORD2(p) *(const mz_uint16 *)(p) #endif static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) { mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len; mz_uint num_probes_left = d->m_max_probes[match_len >= 32]; const mz_uint16 *s = (const mz_uint16 *)(d->m_dict + pos), *p, *q; mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]), s01 = TDEFL_READ_UNALIGNED_WORD2(s); MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return; for (;;) { for (;;) { if (--num_probes_left == 0) return; #define TDEFL_PROBE \ next_probe_pos = d->m_next[probe_pos]; \ if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \ return; \ probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \ if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) \ break; TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE; } if (!dist) break; q = (const mz_uint16 *)(d->m_dict + probe_pos); if (TDEFL_READ_UNALIGNED_WORD2(q) != s01) continue; p = s; probe_len = 32; do { } while ((TDEFL_READ_UNALIGNED_WORD2(++p) == TDEFL_READ_UNALIGNED_WORD2(++q)) && (TDEFL_READ_UNALIGNED_WORD2(++p) == TDEFL_READ_UNALIGNED_WORD2(++q)) && (TDEFL_READ_UNALIGNED_WORD2(++p) == TDEFL_READ_UNALIGNED_WORD2(++q)) && (TDEFL_READ_UNALIGNED_WORD2(++p) == TDEFL_READ_UNALIGNED_WORD2(++q)) && (--probe_len > 0)); if (!probe_len) { *pMatch_dist = dist; *pMatch_len = MZ_MIN(max_match_len, (mz_uint)TDEFL_MAX_MATCH_LEN); break; } else if ((probe_len = ((mz_uint)(p - s) * 2) + (mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q)) > match_len) { *pMatch_dist = dist; if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) == max_match_len) break; c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]); } } } #else static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) { mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len; mz_uint num_probes_left = d->m_max_probes[match_len >= 32]; const mz_uint8 *s = d->m_dict + pos, *p, *q; mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1]; MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return; for (;;) { for (;;) { if (--num_probes_left == 0) return; #define TDEFL_PROBE \ next_probe_pos = d->m_next[probe_pos]; \ if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \ return; \ probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \ if ((d->m_dict[probe_pos + match_len] == c0) && (d->m_dict[probe_pos + match_len - 1] == c1)) \ break; TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE; } if (!dist) break; p = s; q = d->m_dict + probe_pos; for (probe_len = 0; probe_len < max_match_len; probe_len++) if (*p++ != *q++) break; if (probe_len > match_len) { *pMatch_dist = dist; if ((*pMatch_len = match_len = probe_len) == max_match_len) return; c0 = d->m_dict[pos + match_len]; c1 = d->m_dict[pos + match_len - 1]; } } } #endif /* #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES */ #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN #ifdef MINIZ_UNALIGNED_USE_MEMCPY static mz_uint32 TDEFL_READ_UNALIGNED_WORD32(const mz_uint8* p) { mz_uint32 ret; memcpy(&ret, p, sizeof(mz_uint32)); return ret; } #else #define TDEFL_READ_UNALIGNED_WORD32(p) *(const mz_uint32 *)(p) #endif static mz_bool tdefl_compress_fast(tdefl_compressor *d) { /* Faster, minimally featured LZRW1-style match+parse loop with better register utilization. Intended for applications where raw throughput is valued more highly than ratio. */ mz_uint lookahead_pos = d->m_lookahead_pos, lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size, total_lz_bytes = d->m_total_lz_bytes, num_flags_left = d->m_num_flags_left; mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags; mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK; while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size))) { const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096; mz_uint dst_pos = (lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK; mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size); d->m_src_buf_left -= num_bytes_to_process; lookahead_size += num_bytes_to_process; while (num_bytes_to_process) { mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process); memcpy(d->m_dict + dst_pos, d->m_pSrc, n); if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc, MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos)); d->m_pSrc += n; dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK; num_bytes_to_process -= n; } dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size); if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE)) break; while (lookahead_size >= 4) { mz_uint cur_match_dist, cur_match_len = 1; mz_uint8 *pCur_dict = d->m_dict + cur_pos; mz_uint first_trigram = TDEFL_READ_UNALIGNED_WORD32(pCur_dict) & 0xFFFFFF; mz_uint hash = (first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) & TDEFL_LEVEL1_HASH_SIZE_MASK; mz_uint probe_pos = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)lookahead_pos; if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <= dict_size) && ((TDEFL_READ_UNALIGNED_WORD32(d->m_dict + (probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) & 0xFFFFFF) == first_trigram)) { const mz_uint16 *p = (const mz_uint16 *)pCur_dict; const mz_uint16 *q = (const mz_uint16 *)(d->m_dict + probe_pos); mz_uint32 probe_len = 32; do { } while ((TDEFL_READ_UNALIGNED_WORD2(++p) == TDEFL_READ_UNALIGNED_WORD2(++q)) && (TDEFL_READ_UNALIGNED_WORD2(++p) == TDEFL_READ_UNALIGNED_WORD2(++q)) && (TDEFL_READ_UNALIGNED_WORD2(++p) == TDEFL_READ_UNALIGNED_WORD2(++q)) && (TDEFL_READ_UNALIGNED_WORD2(++p) == TDEFL_READ_UNALIGNED_WORD2(++q)) && (--probe_len > 0)); cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) + (mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q); if (!probe_len) cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0; if ((cur_match_len < TDEFL_MIN_MATCH_LEN) || ((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U * 1024U))) { cur_match_len = 1; *pLZ_code_buf++ = (mz_uint8)first_trigram; *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); d->m_huff_count[0][(mz_uint8)first_trigram]++; } else { mz_uint32 s0, s1; cur_match_len = MZ_MIN(cur_match_len, lookahead_size); MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 1) && (cur_match_dist <= TDEFL_LZ_DICT_SIZE)); cur_match_dist--; pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN); #ifdef MINIZ_UNALIGNED_USE_MEMCPY memcpy(&pLZ_code_buf[1], &cur_match_dist, sizeof(cur_match_dist)); #else *(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist; #endif pLZ_code_buf += 3; *pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80); s0 = s_tdefl_small_dist_sym[cur_match_dist & 511]; s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8]; d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++; d->m_huff_count[0][s_tdefl_len_sym[cur_match_len - TDEFL_MIN_MATCH_LEN]]++; } } else { *pLZ_code_buf++ = (mz_uint8)first_trigram; *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); d->m_huff_count[0][(mz_uint8)first_trigram]++; } if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; } total_lz_bytes += cur_match_len; lookahead_pos += cur_match_len; dict_size = MZ_MIN(dict_size + cur_match_len, (mz_uint)TDEFL_LZ_DICT_SIZE); cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK; MZ_ASSERT(lookahead_size >= cur_match_len); lookahead_size -= cur_match_len; if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) { int n; d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size; d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left; if ((n = tdefl_flush_block(d, 0)) != 0) return (n < 0) ? MZ_FALSE : MZ_TRUE; total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left; } } while (lookahead_size) { mz_uint8 lit = d->m_dict[cur_pos]; total_lz_bytes++; *pLZ_code_buf++ = lit; *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; } d->m_huff_count[0][lit]++; lookahead_pos++; dict_size = MZ_MIN(dict_size + 1, (mz_uint)TDEFL_LZ_DICT_SIZE); cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; lookahead_size--; if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) { int n; d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size; d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left; if ((n = tdefl_flush_block(d, 0)) != 0) return (n < 0) ? MZ_FALSE : MZ_TRUE; total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left; } } } d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size; d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left; return MZ_TRUE; } #endif /* MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN */ static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d, mz_uint8 lit) { d->m_total_lz_bytes++; *d->m_pLZ_code_buf++ = lit; *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; } d->m_huff_count[0][lit]++; } static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d, mz_uint match_len, mz_uint match_dist) { mz_uint32 s0, s1; MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) && (match_dist <= TDEFL_LZ_DICT_SIZE)); d->m_total_lz_bytes += match_len; d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN); match_dist -= 1; d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF); d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8); d->m_pLZ_code_buf += 3; *d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; } s0 = s_tdefl_small_dist_sym[match_dist & 511]; s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127]; d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++; d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++; } static mz_bool tdefl_compress_normal(tdefl_compressor *d) { const mz_uint8 *pSrc = d->m_pSrc; size_t src_buf_left = d->m_src_buf_left; tdefl_flush flush = d->m_flush; while ((src_buf_left) || ((flush) && (d->m_lookahead_size))) { mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos; /* Update dictionary and hash chains. Keeps the lookahead size equal to TDEFL_MAX_MATCH_LEN. */ if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1)) { mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK, ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2; mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK]; mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size); const mz_uint8 *pSrc_end = pSrc ? pSrc + num_bytes_to_process : NULL; src_buf_left -= num_bytes_to_process; d->m_lookahead_size += num_bytes_to_process; while (pSrc != pSrc_end) { mz_uint8 c = *pSrc++; d->m_dict[dst_pos] = c; if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c; hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1); d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)(ins_pos); dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; ins_pos++; } } else { while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) { mz_uint8 c = *pSrc++; mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK; src_buf_left--; d->m_dict[dst_pos] = c; if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c; if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN) { mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2; mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << (TDEFL_LZ_HASH_SHIFT * 2)) ^ (d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1); d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)(ins_pos); } } } d->m_dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size); if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) break; /* Simple lazy/greedy parsing state machine. */ len_to_move = 1; cur_match_dist = 0; cur_match_len = d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1); cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK; if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS)) { if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) { mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK]; cur_match_len = 0; while (cur_match_len < d->m_lookahead_size) { if (d->m_dict[cur_pos + cur_match_len] != c) break; cur_match_len++; } if (cur_match_len < TDEFL_MIN_MATCH_LEN) cur_match_len = 0; else cur_match_dist = 1; } } else { tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size, d->m_lookahead_size, &cur_match_dist, &cur_match_len); } if (((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U * 1024U)) || (cur_pos == cur_match_dist) || ((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5))) { cur_match_dist = cur_match_len = 0; } if (d->m_saved_match_len) { if (cur_match_len > d->m_saved_match_len) { tdefl_record_literal(d, (mz_uint8)d->m_saved_lit); if (cur_match_len >= 128) { tdefl_record_match(d, cur_match_len, cur_match_dist); d->m_saved_match_len = 0; len_to_move = cur_match_len; } else { d->m_saved_lit = d->m_dict[cur_pos]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len; } } else { tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist); len_to_move = d->m_saved_match_len - 1; d->m_saved_match_len = 0; } } else if (!cur_match_dist) tdefl_record_literal(d, d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]); else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) || (cur_match_len >= 128)) { tdefl_record_match(d, cur_match_len, cur_match_dist); len_to_move = cur_match_len; } else { d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len; } /* Move the lookahead forward by len_to_move bytes. */ d->m_lookahead_pos += len_to_move; MZ_ASSERT(d->m_lookahead_size >= len_to_move); d->m_lookahead_size -= len_to_move; d->m_dict_size = MZ_MIN(d->m_dict_size + len_to_move, (mz_uint)TDEFL_LZ_DICT_SIZE); /* Check if it's time to flush the current LZ codes to the internal output buffer. */ if ((d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) || ((d->m_total_lz_bytes > 31 * 1024) && (((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >= d->m_total_lz_bytes) || (d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS)))) { int n; d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left; if ((n = tdefl_flush_block(d, 0)) != 0) return (n < 0) ? MZ_FALSE : MZ_TRUE; } } d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left; return MZ_TRUE; } static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d) { if (d->m_pIn_buf_size) { *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf; } if (d->m_pOut_buf_size) { size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs, d->m_output_flush_remaining); memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf + d->m_output_flush_ofs, n); d->m_output_flush_ofs += (mz_uint)n; d->m_output_flush_remaining -= (mz_uint)n; d->m_out_buf_ofs += n; *d->m_pOut_buf_size = d->m_out_buf_ofs; } return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE : TDEFL_STATUS_OKAY; } tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush) { if (!d) { if (pIn_buf_size) *pIn_buf_size = 0; if (pOut_buf_size) *pOut_buf_size = 0; return TDEFL_STATUS_BAD_PARAM; } d->m_pIn_buf = pIn_buf; d->m_pIn_buf_size = pIn_buf_size; d->m_pOut_buf = pOut_buf; d->m_pOut_buf_size = pOut_buf_size; d->m_pSrc = (const mz_uint8 *)(pIn_buf); d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0; d->m_out_buf_ofs = 0; d->m_flush = flush; if (((d->m_pPut_buf_func != NULL) == ((pOut_buf != NULL) || (pOut_buf_size != NULL))) || (d->m_prev_return_status != TDEFL_STATUS_OKAY) || (d->m_wants_to_finish && (flush != TDEFL_FINISH)) || (pIn_buf_size && *pIn_buf_size && !pIn_buf) || (pOut_buf_size && *pOut_buf_size && !pOut_buf)) { if (pIn_buf_size) *pIn_buf_size = 0; if (pOut_buf_size) *pOut_buf_size = 0; return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM); } d->m_wants_to_finish |= (flush == TDEFL_FINISH); if ((d->m_output_flush_remaining) || (d->m_finished)) return (d->m_prev_return_status = tdefl_flush_output_buffer(d)); #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) && ((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) && ((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS | TDEFL_RLE_MATCHES)) == 0)) { if (!tdefl_compress_fast(d)) return d->m_prev_return_status; } else #endif /* #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN */ { if (!tdefl_compress_normal(d)) return d->m_prev_return_status; } if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) && (pIn_buf)) d->m_adler32 = (mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf, d->m_pSrc - (const mz_uint8 *)pIn_buf); if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) && (!d->m_output_flush_remaining)) { if (tdefl_flush_block(d, flush) < 0) return d->m_prev_return_status; d->m_finished = (flush == TDEFL_FINISH); if (flush == TDEFL_FULL_FLUSH) { MZ_CLEAR_ARR(d->m_hash); MZ_CLEAR_ARR(d->m_next); d->m_dict_size = 0; } } return (d->m_prev_return_status = tdefl_flush_output_buffer(d)); } tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush) { MZ_ASSERT(d->m_pPut_buf_func); return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush); } tdefl_status tdefl_init(tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags) { d->m_pPut_buf_func = pPut_buf_func; d->m_pPut_buf_user = pPut_buf_user; d->m_flags = (mz_uint)(flags); d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3; d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0; d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3; if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_ARR(d->m_hash); d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size = d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0; d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished = d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0; d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; *d->m_pLZ_flags = 0; d->m_num_flags_left = 8; d->m_pOutput_buf = d->m_output_buf; d->m_pOutput_buf_end = d->m_output_buf; d->m_prev_return_status = TDEFL_STATUS_OKAY; d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0; d->m_adler32 = 1; d->m_pIn_buf = NULL; d->m_pOut_buf = NULL; d->m_pIn_buf_size = NULL; d->m_pOut_buf_size = NULL; d->m_flush = TDEFL_NO_FLUSH; d->m_pSrc = NULL; d->m_src_buf_left = 0; d->m_out_buf_ofs = 0; if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_ARR(d->m_dict); memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); return TDEFL_STATUS_OKAY; } tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d) { return d->m_prev_return_status; } mz_uint32 tdefl_get_adler32(tdefl_compressor *d) { return d->m_adler32; } mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags) { tdefl_compressor *pComp; mz_bool succeeded; if (((buf_len) && (!pBuf)) || (!pPut_buf_func)) return MZ_FALSE; pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); if (!pComp) return MZ_FALSE; succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) == TDEFL_STATUS_OKAY); succeeded = succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) == TDEFL_STATUS_DONE); MZ_FREE(pComp); return succeeded; } typedef struct { size_t m_size, m_capacity; mz_uint8 *m_pBuf; mz_bool m_expandable; } tdefl_output_buffer; static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len, void *pUser) { tdefl_output_buffer *p = (tdefl_output_buffer *)pUser; size_t new_size = p->m_size + len; if (new_size > p->m_capacity) { size_t new_capacity = p->m_capacity; mz_uint8 *pNew_buf; if (!p->m_expandable) return MZ_FALSE; do { new_capacity = MZ_MAX(128U, new_capacity << 1U); } while (new_size > new_capacity); pNew_buf = (mz_uint8 *)MZ_REALLOC(p->m_pBuf, new_capacity); if (!pNew_buf) return MZ_FALSE; p->m_pBuf = pNew_buf; p->m_capacity = new_capacity; } memcpy((mz_uint8 *)p->m_pBuf + p->m_size, pBuf, len); p->m_size = new_size; return MZ_TRUE; } void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags) { tdefl_output_buffer out_buf; MZ_CLEAR_OBJ(out_buf); if (!pOut_len) return MZ_FALSE; else *pOut_len = 0; out_buf.m_expandable = MZ_TRUE; if (!tdefl_compress_mem_to_output(pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) return NULL; *pOut_len = out_buf.m_size; return out_buf.m_pBuf; } size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags) { tdefl_output_buffer out_buf; MZ_CLEAR_OBJ(out_buf); if (!pOut_buf) return 0; out_buf.m_pBuf = (mz_uint8 *)pOut_buf; out_buf.m_capacity = out_buf_len; if (!tdefl_compress_mem_to_output(pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) return 0; return out_buf.m_size; } static const mz_uint s_tdefl_num_probes[11] = { 0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500 }; /* level may actually range from [0,10] (10 is a "hidden" max level, where we want a bit more compression and it's fine if throughput to fall off a cliff on some files). */ mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, int strategy) { mz_uint comp_flags = s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] | ((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0); if (window_bits > 0) comp_flags |= TDEFL_WRITE_ZLIB_HEADER; if (!level) comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS; else if (strategy == MZ_FILTERED) comp_flags |= TDEFL_FILTER_MATCHES; else if (strategy == MZ_HUFFMAN_ONLY) comp_flags &= ~TDEFL_MAX_PROBES_MASK; else if (strategy == MZ_FIXED) comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS; else if (strategy == MZ_RLE) comp_flags |= TDEFL_RLE_MATCHES; return comp_flags; } #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4204) /* nonstandard extension used : non-constant aggregate initializer (also supported by GNU C and C99, so no big deal) */ #endif /* Simple PNG writer function by Alex Evans, 2011. Released into the public domain: https://gist.github.com/908299, more context at http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/. This is actually a modification of Alex's original code so PNG files generated by this function pass pngcheck. */ void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip) { /* Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was defined. */ static const mz_uint s_tdefl_png_num_probes[11] = { 0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500 }; tdefl_compressor *pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); tdefl_output_buffer out_buf; int i, bpl = w * num_chans, y, z; mz_uint32 c; *pLen_out = 0; if (!pComp) return NULL; MZ_CLEAR_OBJ(out_buf); out_buf.m_expandable = MZ_TRUE; out_buf.m_capacity = 57 + MZ_MAX(64, (1 + bpl) * h); if (NULL == (out_buf.m_pBuf = (mz_uint8 *)MZ_MALLOC(out_buf.m_capacity))) { MZ_FREE(pComp); return NULL; } /* write dummy header */ for (z = 41; z; --z) tdefl_output_buffer_putter(&z, 1, &out_buf); /* compress image data */ tdefl_init(pComp, tdefl_output_buffer_putter, &out_buf, s_tdefl_png_num_probes[MZ_MIN(10, level)] | TDEFL_WRITE_ZLIB_HEADER); for (y = 0; y < h; ++y) { tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH); tdefl_compress_buffer(pComp, (mz_uint8 *)pImage + (flip ? (h - 1 - y) : y) * bpl, bpl, TDEFL_NO_FLUSH); } if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) != TDEFL_STATUS_DONE) { MZ_FREE(pComp); MZ_FREE(out_buf.m_pBuf); return NULL; } /* write real header */ *pLen_out = out_buf.m_size - 41; { static const mz_uint8 chans[] = { 0x00, 0x00, 0x04, 0x02, 0x06 }; mz_uint8 pnghdr[41] = { 0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a, 0x00, 0x00, 0x00, 0x0d, 0x49, 0x48, 0x44, 0x52, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x49, 0x44, 0x41, 0x54 }; pnghdr[18] = (mz_uint8)(w >> 8); pnghdr[19] = (mz_uint8)w; pnghdr[22] = (mz_uint8)(h >> 8); pnghdr[23] = (mz_uint8)h; pnghdr[25] = chans[num_chans]; pnghdr[33] = (mz_uint8)(*pLen_out >> 24); pnghdr[34] = (mz_uint8)(*pLen_out >> 16); pnghdr[35] = (mz_uint8)(*pLen_out >> 8); pnghdr[36] = (mz_uint8)*pLen_out; c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, pnghdr + 12, 17); for (i = 0; i < 4; ++i, c <<= 8) ((mz_uint8 *)(pnghdr + 29))[i] = (mz_uint8)(c >> 24); memcpy(out_buf.m_pBuf, pnghdr, 41); } /* write footer (IDAT CRC-32, followed by IEND chunk) */ if (!tdefl_output_buffer_putter("\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf)) { *pLen_out = 0; MZ_FREE(pComp); MZ_FREE(out_buf.m_pBuf); return NULL; } c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, out_buf.m_pBuf + 41 - 4, *pLen_out + 4); for (i = 0; i < 4; ++i, c <<= 8) (out_buf.m_pBuf + out_buf.m_size - 16)[i] = (mz_uint8)(c >> 24); /* compute final size of file, grab compressed data buffer and return */ *pLen_out += 57; MZ_FREE(pComp); return out_buf.m_pBuf; } void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, int num_chans, size_t *pLen_out) { /* Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's where #defined out) */ return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans, pLen_out, 6, MZ_FALSE); } #ifndef MINIZ_NO_MALLOC /* Allocate the tdefl_compressor and tinfl_decompressor structures in C so that */ /* non-C language bindings to tdefL_ and tinfl_ API don't need to worry about */ /* structure size and allocation mechanism. */ tdefl_compressor *tdefl_compressor_alloc(void) { return (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); } void tdefl_compressor_free(tdefl_compressor *pComp) { MZ_FREE(pComp); } #endif #ifdef _MSC_VER #pragma warning(pop) #endif #ifdef __cplusplus } #endif #endif /*#ifndef MINIZ_NO_DEFLATE_APIS*/